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To every generalized urn model there exists a finite (Mealy) automaton with identical
propositional calculus. The converse is true as well.
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1. INTRODUCTION OF CONCEPTS

In what follows we shall explicitly and constructively demonstrate the equiv-
alence of the empirical logics (i.e., the propositional calculi) associated with
the generalized urn models (GUM) suggested by Wright (1978, 1990), and au-
tomaton partition logics (APL) (Svozil, 1993, 1998; Schaller and Svozil, 1996;
Dvurečenskij et al., 1995; Calude et al., 1997). (The result has been mentioned
already in (Svozil, 1998, p. 145), but no proof has been given). The logical equiva-
lence of automaton models (AM) with generalized urn models suggests that these
logics are more general and “robust” with respect to changes of the particular
model than could have been expected from the particular instances of their first
appearance.

1.1. Generalized Urn Models

A generalized urn model U = 〈U,C,L,�〉 is characterized as follows. Con-
sider an ensemble of balls with black background color. Printed on these balls
are some color symbols from a symbolic alphabet L. The colors are elements of
a set of colors C. A particular ball type is associated with a unique combination
of mono-spectrally (no mixture of wavelength) colored symbols printed on the
black ball background. Let U be the set of ball types. We shall assume that every
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ball contains just one single symbol per color. (Not all types of balls; i.e., not all
color/symbol combinations, may be present in the ensemble, though).

Let |U | be the number of different types of balls, |C| be the number of
different mono-spectral colors, |L| be the number of different output symbols.

Consider the deterministic “output” or “lookup” function �(u, c) = v,
u ∈ U , c ∈ C, v ∈ L, which returns one symbol per ball type and color. One
interpretation of this lookup function � is as follows. Consider a set of |C| eye-
glasses build from filters for the |C| different colors. Let us assume that these
mono-spectral filters are “perfect” in that they totally absorb light of all other
colors but a particular single one. In that way, every color can be associated with
a particular eyeglass and vice versa.

When a spectator looks at a particular ball through such an eyeglass, the
only operationally recognizable symbol will be the one in the particular color
which is transmitted through the eyeglass. All other colors are absorbed, and the
symbols printed in them will appear black and therefore cannot be differentiated
from the black background. Hence the ball appears to carry a different “message”
or symbol, depending on the color at which it is viewed.

An empirical logic can be constructed as follows. Consider the set of all ball
types. With respect to a particular colored eyeglass, this set disjointly “decays”
or gets partitioned into those ball types which can be separated by the particular
color of the eyeglass. Every such partition of ball types can then be identified with
a Boolean algebra whose atoms are the elements of the partition. A pasting of all
of these Boolean algebras yields the empirical logic associated with the particular
urn model.

1.2. Automaton Models

A (Mealy type) automaton A = 〈S, I,O, δ, λ〉 is characterized by the set
of states S, by the set of input symbols I , and by the set of output symbols O.
δ(s, i) = s ′ and λ(s, i) = o, s, s ′ ∈ S, i ∈ I and o ∈ O represent the transition
and the output functions, respectively. The restriction to Mealy automata is for
convenience only.

A typical automaton experiment aims at an operational determination of an
unknown initial state by the input of some symbolic sequence and the observa-
tion of the resulting output symbols. Every such input/output experiment results
in a state partition in the following way. Consider a particular automaton. Every
experiment on such an automaton which tries to solve the initial state problem
is characterized by a set of input/output symbols as a result of the possible in-
put/output sequences for this experiment. Every such distinct set of input/output
symbols is associated with a set of initial automaton states which would reproduce
that sequence. This state set may contain one or more states, depending on the abil-
ity of the experiment to separate different initial automaton states. A partitioning
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of the automaton states is obtained if one considers a single input sequence and
the variety of all possible output sequences (given a particular automaton). Stated
differently: given a set of inputs, the set of automaton states decays into disjoint
subsets associated with the possible output sequences. (All elements of a subset
yield the same output on the same input).

This partition can then be identified with a Boolean algebra, with the elements
of the partition interpreted as atoms. By pasting the Boolean algebras of the “finest”
partitions together one obtains an empirical partition logic associated with the
particular automaton. (The converse construction is also possible, but not unique;
see below).

For the sake of simplicity, we shall assume that every experiment just deals
with a single input/output combination. That is, the finest partitions are reached
already after the first symbol. This does not impose any restriction on the partition
logic, since given any particular automaton, it is always possible to construct
another automaton with exactly the same partition logic as the first one with the
above property.

More explicitly, given any partition logic, it is always possible to construct
a corresponding automaton with the following specification: associate with every
element of the set of partitions a single input symbol. Then take the partition with
the highest number of elements and associate a single output symbol with any
element of this partition. (There are then sufficient output symbols available for the
other partitions as well). Different partitions require different input symbols; one
input symbol per partition. The output function can then be defined by associating
a single output symbol per element of the partition (associated with a particular
input symbol). Finally, choose a transition function which completely looses the
state information after only one transition; i.e., a transition function which maps
all automaton state into a single one.

2. PROOF OF LOGICAL EQUIVALENCE

From the definitions and constructions mentioned in the previous sections
it is intuitively clear that, with respect to the empirical logics, generalized urn
models and finite automata models are equivalent. Every logic associated with a
generalized urn model can be interpreted as an automaton partition logic associated
with some (Mealy) automaton (actually an infinity thereof). Conversely, any logic
associated with some (Mealy) automaton can be interpreted as a logic associated
with some generalized urn model (an infinity thereof). We shall proof these claims
by explicit construction. Essentially, the lookup function � and the output function
λ will be identified. Again, the restriction to Mealy automata is for convenience
only. The considerations are robust with respect to variations of finite input/output
automata.
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2.1. Direct Construction of AM From GUM

To define an APL associated with a Mealy automaton A = 〈S, I,O, δ, λ〉
from a GUM U = 〈U,C,L,�〉, let u ∈ U , c ∈ C, v ∈ L, and s, s ′ ∈ S, i ∈ I ,
o ∈ O, and assume |U | = |S|, |C| = |I |, |L| = |O|. The following identifications
can be made with the help of the bijections tS, tI and tO :

tS(u) = s, tI (c) = i, tO(v) = o,

δ(s, i) = si for fixed si ∈ S and arbitrary s ∈ S, i ∈ I,

λ(s, i) = tO
(
�

(
t−1
S (s), t−1

I (i)
))

. (1)

More generally, one could use equivalence classes instead of a bijection. Since
the input-output behavior is equivalent and the automaton transition function is
trivially |L|-to-one, both entities yield the same propositional calculus.

2.2. Direct Construction of GUM From AM

Conversely, consider an arbitrary Mealy automaton A = 〈S, I,O, δ, λ〉 and
its associated propositional calculus APL.

Just as before, associate with every single automaton state s ∈ S a ball type
u, associate with every input symbol i ∈ I a unique color c, and associate with
every output symbol o ∈ O a unique symbol v; i.e., again |U | = |S|, |C| = |I |,
|L| = |O|. The following identifications can be made with the help of the bijections
τU , τC and τL:

τU (s) = u, τC(i) = c, τL(o) = v, �(u, c) = τL

(
λ
(
τ−1
U (u), τ−1

C (c)
))

. (2)

A direct comparison of (1) and (2) yields

τ−1
U = tS, τ−1

C = tI , τ−1
L = tO. (3)

2.3. Schemes Using Dispersion-Free States

Another equivalence scheme uses the fact that both automaton partition log-
ics and the logic of generalized urn models have a separating (indeed, full) set
of dispersion-free states. (In what follows, the terms “dispersion-free state” “two-
valued state” “valuation” “dispersion-free probability measure” are synonyms for
measures which take on only the values 0 and 1. We thereby explicitly exclude
dispersion-free measures which take on other values, such as 1/2 and 0, as in-
troduced by Wright (1978)). Stated differently, given a finite atomic logic with a
separating set of states, then the enumeration of the complete set of dispersion-free
states enables the explicit construction of generalized urn models and automaton
logics whose logic corresponds to the original one.
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This can be achieved by “inverting” the set of two-valued states as follows.
(The method is probably best understood by considering the examples below). Let
us start with an atomic logic with a separating set of states.

(i) In the first step, every atom of this lattice is labeled by some natural
number, starting from “1” to “n,” where n stands for the number of
lattice atoms. The set of atoms is denoted by A = {1, 2, . . . , n}.

(ii) Then, all two-valued states of this lattice are labeled consecutively
by natural numbers, starting from “m1” to “mr ,” where r stands for
the number of two-valued states. The set of states is denoted by
M = {m1,m2, . . . , mr}.

(iii) Now partitions are defined as follows. For every atom, a set is created
whose members are the numbers or “labels” of the two-valued states
which are “true” or take on the value “1” on this atom. More precisely,
the elements pi(a) of the partition Pj corresponding to some atom a ∈ A

are defined by
pi(a) = {k | mk(a) = 1, k ∈ M} .

The partitions are obtained by taking the unions of all pi which
belong to the same subalgebra Pj . That the corresponding sets are indeed
partitions follows from the properties of two-valued states: two-valued
states (are “true” or) take on the value “1” on just one atom per subalgebra
and (“false” or) take on the value “0” on all other atoms of this subalgebra.

(iv) Let there be t partitions labeled by “1” through “t .” The partition logic
is obtained by a pasting of all partitions Pj , 1 ≤ j ≤ t .

(v) In the following step, a corresponding GUM or automaton model is
obtained from the partition logic just constructed.
(a) A GUM is obtained by the following identifications (see also (Wright,

1978, p. 271)).
• Take as many ball types as there are two-valued states; i.e., r types

of balls.
• Take as many colors as there are subalgebras or partitions; i.e., t

colors.
• Take as many symbols as there are elements in the partition(s)

with the maximal number of elements; i.e., max1≤j≤t |Pj | ≤ n. To
make the construction easier, we may just take as many symbols as
there are atoms; i.e., n symbols. (In most cases, much less symbols
will suffice). Label the symbols by vl . Finally, take r “generic”
balls with black background. Now associate with every measure
a different ball type. (There are r two-valued states, so there will
be r ball types).

• The ith ball type is painted by colored symbols as follows: Find
the atoms for which the ith two-valued state mi is 1. Then paint



750 Svozil

the symbol corresponding to every such lattice atom on the ball,
thereby choosing the color associated with the subalgebra or par-
tition the atom belongs to. If the atom belongs to more than one
subalgebra, then paint the same symbol in as many colors as there
are partitions or subalgebras the atom belongs to (one symbol per
subalgebra).

This completes the construction.
(b) A Mealy automaton is obtained by the following identifications (see

also (Svozil, 1993, pp. 154–155)).
• Take as many automaton states as there are two-valued states; i.e.,

r automaton states.
• Take as many input symbols as there are subalgebras or partitions;

i.e., t symbols.
• Take as many output symbols as there are elements in the parti-

tion(s) with the maximal number of elements (plus one additional
auxiliary output symbol “∗,” see below); i.e., max1≤j≤t |Pj | ≤
n + 1.

• The output function is chosen to match the elements of the state
partition corresponding to some input symbol. Alternatively, let
the lattice atom aq ∈ A must be an atom of the subalgebra corre-
sponding to the input il . Then one may choose an output function
such as

λ(mk, il) =
{

aq if mk(aq) = 1

∗ if mk(aq) = 0

with 1 ≤ k ≤ r and 1 ≤ l ≤ t . Here, the additional output symbol
“∗” is needed.

• The transition function is r–to–1 (e.g., by δ(s, i) = s1, s, s1 ∈ S,
i ∈ I ), i.e., after one input the information about the initial state
is completely lost.

This completes the construction.

2.4. Example 1: The Generalized Urn Logic L12

In what follows, we shall illustrate the above constructions with a couple of
examples. First, consider the generalized urn model

〈{u1, . . . , u5}, {red, green}, {1, . . . , 5},�〉
with � listed in Tables I and II.

The associated Mealy automaton can be directly constructed as follows.
Take tS = tO = id, where id represents the identity function, and take tI (red) = 0
and tI (green) = 1, respectively. Furthermore, fix a (five×two)-to-one transition
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Table I. Ball Types in Wright’s Generalized
Urn Model Wright (1990) (cf. Also [Svozil

(1998) p. 143ff])

Ball type Red Green

1 1 3
2 1 4
3 2 3
4 2 4
5 5 5

function by δ(., .) = 1. The transition and output tables are listed in Tables I and
II. Both empirical structures yield the same propositional logic L12.

2.5. Example 2: The Automaton Partition Logic L12

Let us start with an automaton whose transition and output tables are listed
in Tables I and II and indirectly construct a logically equivalent GUM by using
dispersion-free states. The first thing to do is to figure out all dispersion-free states
of L12. There are five of them, which we might write in vector form; i.e., in
lexicographic order:

m1 = (0, 0, 0, 0, 1), m2 = (0, 1, 0, 1, 0), m3 = (0, 1, 1, 0, 0),
m4 = (1, 0, 0, 1, 0), m5 = (1, 0, 1, 0, 0).

(4)

Now define the following GUM as follows. There are two subalgebras with
the atoms 1, 2, 5 and 3, 4, 5, respectively. Since there are five two-valued measures
corresponding to five ball types. They are colored according to the coloring rules
defined above and � as listed in Table III.

2.6. Example 3: GUM of the Kochen–Specker “Bug” Logic

Another, less simple example, is a logic which is already mentioned by
Kochen and Specker (1967) (this is a subgraph of their �1) whose automaton
partition logic is depicted in Fig. 1. (It is called “bug” by Professor Specker (1999)

Table II. Transition and Output Table of an Associated Automaton Model

δ λ

State 1 2 3 4 5 1 2 3 4 5

0 1 1 1 1 1 1 1 2 2 5
1 1 1 1 1 1 3 4 3 4 5



752 Svozil

Table III. Representation of the Sign Coloring Scheme �

Colors

Ball type c1(Red) c2(Green)

1 ∗ ∗ ∗ ∗ 5 ∗ ∗ ∗ ∗ 5
2 ∗ 2 ∗ ∗ ∗ ∗ ∗ ∗ 4 ∗
3 ∗ 2 ∗ ∗ ∗ ∗ ∗ 3 ∗ ∗
4 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 4 ∗
5 1 ∗ ∗ ∗ ∗ ∗ ∗ 3 ∗ ∗

Note. “∗” means no sign at all (Black) for the corresponding atom

because of the similar shape with a bug). There are 14 dispersion-free states which
are listed in Table IV. The associated GUM is listed in Table IV.

3. DISCUSSION

We have explicitly demonstrated the logical equivalence of generalized urn
models and and the logic of finite automata, both by a direct construction and by an
indirect construction utilizing the set of two-valued states. This logical equivalence
stresses the importance of these empirical structures.

GUMs and automata are capable to serve as models for particular types of
lattices with a sufficient number of two-valued states (e.g., with a separating set of
states). Yet, it is this very property which makes impossible the realization of other,
more exotic states, which have no classical and not even a quantum mechanical
counterpart. Take, as an example, the Wright state (Wright, 1978; Svozil, 1998) on
the pentagon (or any n-agon, with odd n > 3, n = 2k + 1, k = 2, 3, . . .) Greechie
diagram with value 1/2 on the five vertices and 0 on each middle atom (three
atoms per subalgebra). The 11 two-valued measures suffice to generate GUMs

Fig. 1. Greechie diagram of automaton partition logic with a nonfull set of dispersion-free measures.
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and finite automata with that logical structure, but none such model realizes the
Wright state.
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